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A numerical method for the calculation of bound states in a one-dimensional potential is suggested, 
the application of which is very simple and economic. The wavefunctions as well as the potential are 
approximated by Lagrange interpolation polynomials of the order 2N. The application of the varia- 
tional principle yields a (2N - 1) th order eigenvalue problem of the symmetric matrix//derived from 
the universal matrices T and V (~) (l = 0, 1 ..... N) and (2N + 1) discrete potential values of the actual 
problem by means of simple matrix algebra. The accuracy of the obtained energies and wavefunctions 
depends on the parameter N. 

The proposed method has been applied to different types of potentials. Using polynomials of the 
ordbr twenty (N = t0), generally the results are quite satisfactory for the states of quantum numbers 
n~4. 

Key words: Numerical solution of the Schr6dinger equation - Schr6dinger equation, numerical 
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1. Introduction 

In consequence of the development of both the numerical ab initio and semi- 
empirical methods of quantum chemistry and of the computer facilities, the 
calculation of potential surfaces for the movement of nuclei in molecules and com- 
plexes has become more and more possible. In some cases it is desirable to complete 
such computations by the calculation of stationary states of the nuclei in these 
potentials (determination of vibrational frequencies, investigation of vibronic 
interactions, estimation of proton-transfer rates in the double-well potentials of 
hydrogen bonds etc.). 

The most simple problem in this respect is the calculation of bound states 
in a one-dimensional potential v(x). Besides the possibility of the numerical 
integration of the Schr6dinger equation using the Runge-Kutta-Merson method 
[1] some approximate procedures have been described in the literature, e.g. the 
method of Somorjai and Hornig [2] and the procedure of Stratmann and Seelig 
[3]. Because of the special approximations of the potential and the wavefunctions 
the method proposed by Somorjai and Hornig is applicable mainly to oscillator- 
like problems. Rai and Ladik [4] have used this method for an investigation of 
the proton vibrations in the double-well potentials of hydrogen bonds. But 
in this calculation the accuracy of the wavefunctions was poor. Stratmann and 
Seelig use a finite difference approximation for the Schr6dinger equation. They 
obtain a problem which may be solved iteratively. This method is very con- 
venient for potentials as they occur in the one-dimensional electron gas model 
of n-electron systems. 
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In the following we suggest a new method for the numerical solution of the 
one-dimensional Schr6dinger equation which is applicable to potentials, given 
analytically or numerically. It is assumed that the potential can be approximated 
by polynomials of not too high order in that range, in which the wavefunctions 
of the relevant states yield essential contributions. The application of the vari- 
ational principle to the values of the wavefunction itself (for discrete arguments) 
results in an algebraic eigenvalue problem of a Hamilton matrix H. Due to this 
procedure any integral calculations are avoided in actual problems. The integrals 
are contained in some universal matrices which are constants of the procedure. 

2. General Formulation 

The one-dimensional Schr6dinger equation (in atomic units) reads 

~ IZi(x)) = e i l Z , ( x ) )  (Z, lZ~) = 1 (1) 

with the Hamiltonian 
~ _  1 d 2 

2 M  dx  2 q- v(x) (2) 

where M denotes the mass of the particle and v(x) means the one-dimensional 
potential. 

In order to approximate the wavefunctions by Lagrange interpolation 
polynomials, (2N + 1) equidistant points xz (l = - N, - N + 1 . . . . .  0, ..., N - 1, N) 
are chosen on the x-axis in that range, in which the relevant wavefunctions are 
essentially different from zero. These x-values are used as arguments of the 
interpolation. By the appropriate choice of the distance b between two neigh- 
bouring arguments xk and xk+ 1 ( - N  _< k < N -  1) the assumption 

Z/(x)=0 for x < x _ N  and x > x  N (3) 

can be justified approximately. Since a normalized wavefunction with z nodes 
cannot be represented by a polynomial of order less than z + 2 in the range 
{x-N < x < xN} and surely a higher order is necessary for a proper approximation, 
the parameter N should be large compared with z, when z is the quantum number 
of the highest state to be determined. 

For the following derivations it is very convenient to substitute 

= (x - Xo)/b.  (4) 

Further, we define the Lagrange polynomials 

Lk (~) = Jlkj L (0/(~ - k) - N - k_< N (5) 
where (- N 

(N!) 2 i=-N 

f k l =  1 for k = O  
i - N - 1  k # O .  

i=1 i + N  
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Using these functions for the approximation of the wavefunctions we obtain 
the interpolation polynomials N 

Xi(~)= ~ (~,.zL,( 0 (6) 

with the coefficients t=-N , 
C,,~ = )~,(1). (7) 

The boundary conditions following from Eq. (3) read then 

( -N , ,  = tiN,, = 0 .  (8) 

They imply that all integrals-over wavefunctions may be written with finite limits 
of integration: 

1 + ~  + N  
~ -  ~ d x . . . =  ~ d{  . . . .  (9) 

--o0 - N  

The coefficients Cl,i(--N + 1 < 1 < N - 1 )  are determined by variation. The 
variational principle which is equivalent to the Schr6dinger equation (1) reads 

5 {<X,L ~ IX,> - e , ( < Z , [ X , )  - 1)} = 0 (10) 

where el are the Lagrange multipliers with respect to the normalization conditions 
of the wavefunctions. The execution of the variation yields as Euler equations 
for the determination of the coefficients C~,i (which form the rectangular matrix t~) 
the common algebraic problem 

(-I(~ = s e e  b C + S C  = 1 (11) 
of the order 2N - 1. 

The elements of the symmetrical matrices H and S and the diagonal matrix E 
are 

S d L,.(O - + v ( O  ' -N 2 M b 2  d~ 2 

+N 
Sin,.= ~ d~Lm(~)L.(r ( 1 2 )  

-N 

Em,n = e, ,6 , , , ,  - ( N  - 1) < m, n _< (N - 1). 

The matr ix /~  can be written as a sum of two parts, representing the kinetic and 
the potential energy, respectively: 

_ 1 7"+ P 03 )  
M b  2 

The matrix 7" depends on N only, being independent of the parameters of the 
actual problem. In order to avoid integral calculations for the potential term, 
too, the potential v(O is approximated, in the same way as the wavefunctions (6), 
by the interpolation polynomials I 

N' 

v ( O =  ~ v(1)L't(~). (14) 
l=  - N '  

1 The primes on N and Ll(~) mean that the order of the polynomials for the wavefunctions and 
the order of the polynomial for the approximation of the potential may be different. For the sake of 
simplicity only, we assume N' = N in the following. 
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Thus we obtain the matrix 17"of Eq. (13) ila the form of a sum 

N 
r  v(0 r (!5) 

l= - N  

where the elements of the N-depending, but otherwise universal matrices I 7"(o are 

+N 
12~',) = ~ d~ L,(~) L~(~) L,(~). (16) 

- N  

With the aid of the partition (13) and the approximation (15) the matrix/~ 
for an actual potential v(~) is derived from the universal matrices T and i7,(0 and 
some actual parameters by means of simple matrix algebra. The actual parameters 
are the mass M of the particle, the step width b of the interpolation and the 
(2N + 1) potential values v(1), representing the potential function in the interpola- 
tion approximation (14). 

There exist numerical methods for the solution of the Eq. (11). But a significant 
simplification results from the reduction of it to the simple eigenvalue problem 
(with S =  1) by an orthogonalization of the basis {Lk}. Such a transformation 
allows to apply standard diagonalization procedures which are much more 
effective. 

We use the symmetrical orthogonalization procedure proposed by L6wdin [5]. 
Multiplication of Eq. (11) from the left by the matrix ]//-bS -a/2 yields the new 

equations H C  = C E  C + C = 1 (17) 

where the matrices H and C are defined by 

H = S-1/2f f IS  -1/2 

c =  sl/26.. (18) 

It should be observed that the transformation (18) of the matrix H may be avoided 
in actual calculations using the universal matrices 

T = S -1/2 ~'S -~/2 
(19) 

V(O = S-1/2 ~.m S-1/2 

instead of 7" and I2% The matrix H reads then 
N 

H -  1 T +  ~ v(I) V (~ (20) 
M b  2 l=-N 

The solution of the eigenvalue problem (17) yields the matrix C. The matrix 
containing the values of the wavefunctions by virtue of Eq. (6) is obtained from 
the expression 

C =  1 - - - S - ' / 2 C .  (21) 

Consequently, besides the universal matrices Tand V (~ (! =0, 1 . . . . .  N) 2 we need 
the matrix S -1/2 for actual calculations. 

It will be shown in the next section that the matrix V ( -~  is obtained from the matrix V m by 
transposition with respect to the secondary diagonal. 
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3. Calculation of the Universal Matrices 

Because of the universality of the matrices T, V m, and S -~/2 and the relative 
large computing time which is necessary for their calculation, compared with the 
time needed for other operations in an actual calculation, it is recommendable 
to calculate these matrices only once and to hold them on an external storage 
volume of the computer equipment. 

The first step is the calculation of the matrices S, T and t 7<z), the elements of 
which are given by Eqs. (12) and (16). The application of the partial integration 
technique shows that all occuring integrals may be expressed by the basic integrals 

+ N  

p~= ~ d~L~(~)/(~-m) 
- N  

+ N (22) 
q,,= ~ d{L3({)/({-n) - N < m , n < N .  

- N  

These integrals have the symmetry propert.ies 

P- m = - P- (23) 

q-n =qn 

which can be proved easily using the property L ( - 4 ) = - L ( ~ ) .  Consequently, 
only (2N + 1) integrals must be calculated. 

The analytical integration of the integrals (22) is simple. However during the 
numerical evaluation of the resulting expressions rather serious problems arise 
due to small differences of large numbers. In order to overcome these difficulties 
either one has to use a very large word length of the computer or to carry out the 
integrations numerically. Mostly the latter possibility will be more practicable 
than the former. 

In the following we give the formulas expressing the various matrix elen'ients 
in terms of the basic integrals. The elements of the matrices S and 7" are 

1 +N +N ~ , s -  ~ , . -  ~.,s + ~ . , .  
~-,~ = ~ & Y,., 2 Y, ( r -  m) { s - . )  - 

J ' ( : # . )  = - -  N s ( : l : n ) = - N  

where 

, +N for [2 Z ~.,r m = . .  
r ( : ~ . )  = - N  

With the aid of a matrix M, the elements of which are given by 

(24) 

(25) 

(26) 

M.,n=lflml~(m-n) for m#n 

I Z M.r m = .  
t . r (  r  - N 

we obtain the expression (25) in the compact matrix form 

(27) 

7" = �89 M SM+. (28) 
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Using the first of the relations (23) we find 

S,n,, = S,,m = S_,,,_,, (29) 

T~,, = 27,,m = T-m,-, ,  (30) 

i.e. the matrix S as well as the matrix 7" are symmetrical with respect to both 
diagonals. 

The definition of the matrix elements l).. (t) (16) may be written as m , n  

+N L3(~) 
V(t)n= fltlflmlflnl ~ de . (16) 

' - N ( 4  - l)  ( 4  - m )  ( ~  - n )  

In this case the symmetry L ( - ~ ) =  - L ( ~ )  implies the relations 

~ ( l )  ~rn(,l) : l~/(m) ~ ( - l )  = f ~ l l f ~ m ] f [ n l  Vll m n m , n  : V l ,n  : - - m , - - t l  , , (31) 

which reduce the number of the different matrix elements considerably. The 
decomposition to partial fractions and partial integration of the integral (16) 
yield the following expressions: 

qz qm qn (l r m ~ n v~ l) Qll'm'n= ( l - m ) ( l - n )  + ( m - l ) ( m - n )  + ( n - l ) ( n - m )  

3 +N 1 qn - ql + ~ qr -- qt (1 ~ n) ( 3 2 )  
~, l , , , -  l - n  l - n  -2  l-----~ r( :/:l)= - N 

+ N  

E 
r( ~ : l ) = -  N 

For the transformation (19) of the matrices 7" and l 7"(~) into T and V ~~ the 
matrix S -1/2 is required. Since the matrix S is symmetrical and positive definite 
we obtain the matrix S-a/2 conveniently by diagonalization of S, i.e. by using the 
relation 

S -1/2 = U D  -1/2 U + (33) 

where U is the unitary matrix of the eigenvectors of S, and D the diagonal matrix 
with the corresponding eigenvalues in its diagonal: 

S U = U D  U + U = U U  + = 1 .  (34) 

Taking into account the symmetry properties (28) of the matrix S one finds an 
unitary transformation 

'2 = X - l  S X  (35) 

which brings the matrix S into the block-diagonal form S. Due to this transforma- 
tion the eigenvalue problem (34) of the order 2 N -  1 divides into two problems 
of the orders N and N -  1, respectively. (For details see the Appendix.) 

The matrix S -~/2 has the same symmetry as the matrix S (29). Using these 
properties it can be shown that the transformations (19) do not influence the 
symmetry relations (30) and (31). The validity of 

Vmt ~.Z) = V ~ (36) , - - m , - n  
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implies that the symmetrical matrices V (~) have to be calculated and storaged 
for /=0,  1,..., N only, The corresponding matrices for negative indices l are 
obtained by transposition with respect to the secondary diagonal. 

Since the integral calculations are partly sensible concerning the numerical 
accuracy it is useful to have a measure of the accuracy finally reached. The most 
critical numbers are contained in the matrices V (~). Therefore the relation 

+N 

V (~ = 1 (37) 
l = - N  

seems to be a powerful criterium This identity can be proved formally using the 
definitions of the matrices V (L~. It states that a shift of the zero point of the potential 
results in shifting of all energy eigenvalues by the same amount. 

4. Symmetrical Potentials 

If the potential function v(4) has the symmetry 

v ( -  4) = v(r (38) 

then the solutions of the Schrtidinger equation divide into two sets, including 
the even states 0~ ( -4 )=  1(~)) and the odd states 0 ~ ( - 4 ) = -  ~((~)), respectively. 
This subdivision is reflected by the eigenvalue problem (17), too. Using the 
reiation (36) together with (38) we find that the matrix V has the same symmetry 
as T, i.e. the whole matrix H is symmetrical with regard to both diagonals. Con- 
sequently, in this case the matrix It can be block-diagonalized by the transforma- 
tion 

= X- '  H X (39) 

in the same way as the matrix S (35). The first Mock of the order N provides the 
even states and the second block of the order N -  1 the odd ones, 

[t should be observed that the reduced eigenvalue problem for the odd states 
is identical with the problem obtained by the application of the not reduced 
formalism to one half of the interval (e.g. { ~ 0), if the order of the polynomials 
is also halved, The corresponding problem for the even states may be derived by 
releasing one of the boundary conditions (8). For this reason it is possible to soIve 
problems having the symmetry (38) with higher accuracy than the asymmetrical 
ones without computation of universal matrices of higher order. 

5. Numerical Examples 

To visualize the accuracy of the wavefunctions and the energies obtained by 
the help of the proposed method we present the numerical results of some simp/e 
problems which can be solved analytically, and finally the results for a numerically 
given double-well potential. 

In all the computations the parameter value N = 10 was used, i.e. the wave- 
functions and the potentials were approximated by po~ynomia/s of the order 
twenty. 
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First we give the potentials v(x), the exact energy levels e,, the analytical 
wavefunctions Z,(x) and the boundary conditions as well as the step width b 
of the interpolation used in the numerical computations (all the values in a.u.). 

1. Box Potential 

{o 
g2 

~.= -~(n+l) 2 

boundary conditions: 

step width: 

0 _ < x < l  
for 

x < 0  and x > l  

)~,(x) = ]/~ sin [(n + 1) rex] 

n = 0 ,  t , 2  . . . .  

Z,(0) = Z,(1) = 0 

b = 0.05. 

2. Harmonic Oscillator Potential 

v(x) = x : /2  

e, = n + 1/2 )~, (x) = A, e x p ( -  X2/2) Hn(x) 

A, - normalization constant 

H, (x) - Hermite polynoms 

n =0 ,  1,2 . . . .  

boundary conditions: Xi ( -  5) = )~i (5) = 0 

step width: b = 0.5. 

The simplifications due to the symmetry of the box potential and the harmonic 
oscillator potential, respectively, are not utilized. 

3. Morse Potential 

v(x) = e x p ( -  2]/~x/lO) - 2exp(V2x/ lO)  

e, = - [1 - (n + 1/2)/10] 2 

X,(x) = A, e x p ( -  q/2) t/s" F ( -  n, 2s, + 1, q) 

t /=  20 e x p ( -  ]/~x/10) s n = l O - n - 1 / 2  

A, - normalization constant 

F - confluent hypergeometric function 

n = 0 ,  1,2 . . . .  

boundary conditions: Z i ( -  8.5) = Z~(21.5) = 0 

step width: b = 1.5. 

4. In the last example the semiempirical Lippincott-Schroeder potential for 
the proton vibration in the N - H . . .  O hydrogen bond, with an assumed bond 
length of 3.0 A, is used. The numerical values of the potential have been taken 
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Table 1. Comparison of approximate and exact energy eigenvalues e. (a.u.) 
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Box potential Harmonic oscil- Morse potential Double well 
lator potential potential 

a p p r o x ,  exac t  a p p r o x ,  exac t  a p p r o x ,  exac t  a p p r o x .  R - K - M  a 

0 4 .934 4.9348 0.499 0.5 
1 19.74 19.739 1.500 1.5 
2 44.41 44.413 2.499 2.5 

3 78.95 78.957 3.501 3.5 
4 123.4 123.37 4.503 4.5 
5 177.6 177.65 5.529 5.5 
6 241.8 241.81 6.541 6.5 
7 315.8 315.83 7.691 7.5 

8 399.7 399.72 8.731 8.5 

- 0 . 9 0 2 5  - 0 . 9 0 2 5  4.91 3.446 
- 0 . 7 2 2 4  - 0 . 7 2 2 5  18.48 18.429 
- 0 . 5 6 2 2  - 0 . 5 6 2 5  28.74 28.747 
- 0 . 4 2 1 7  - 0 . 4 2 2 5  31.39 30.954 

- 0 . 3 0 0 4  - 0 . 3 0 2 5  41.51 41.465 

" Values taken from the calculation of Biczo e t  al. [1]  in which the Runge-Kutta-Merson ( R - K - M )  
method has been used. 

Table 2. Box potential: comparison of approximate and exact wavefunction X(x) (a. u.) 

x n = 0  n = 4  n = 7  n = 8  

(a. u.) a p p r o x ,  exac t  a p p r o x ,  exac t  a p p r o x ,  exac t  a p p r o x ,  exact 

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.05 0.221 0.221 - 1.000 - 1.0 - 1.345 - 1.345 - 1.397 - 1.397 
0.10 0.437 0 .437 - 1.414 - 1.414 - 0 . 8 3 1  - 0 . 8 3 1  - 0 . 4 3 6  - 0 . 4 3 7  
0.15 0 .642 0 .642 - 1.000 - 1.0 0.831 0.831 1.259 1.260 
0.20 0.831 0.831 0 .000 0.0 1.345 1.345 0.831 0.831 

0.25 1.000 1.0 1.000 1.0 0.001 0.0 - 1.000 - 1.0 
0.30 1.144 1.144 1.414 1.414 - 1.346 - 1.345 - 1.146 - 1.144 
0.35 1.260 1.260 1.000 1.0 - 0 . 8 3 1  - 0 . 8 3 1  0 .644 0 .642 

0.40 1.345 1.345 0 .000 0.0 0 .832 0.831 1.344 1.345 
0.45 1.397 1.397 - 1.000 - 1.0 1.344 1.345 - 0 . 2 2 2  - -0 .221  
0.50 1.414 1.414 --  1.414 - 1.414 0.000 0.0 - 1.412 - 1.414 

from the paper of Biczo et  al. [1] and are given in the first column of Table 5. 
The mass M = 1836 a.u., the step width b = 0.09 N = 0.1701 a.u. and the boundary 
conditions •i(0.6 N ) =  X~(2.4A)= 0 (the origin of the x-axis lies in the nitrogen 
nucleus) are the further input parameters of this computation. 

The Table 1 shows the energy levels e, obtained numerically in the four cases. 
For comparison the corresponding exact values are noticed, too (with exception 
of the last column). 

The discrete values of the wavefunctions belonging to the first three examples 
are given in the Tables 2, 3, and 4. Because of the symmetry of both the box potential 
and the harmonic oscillator potential in these cases the tabulation includes only 
the values for one half of the interval taken into consideration. For the double- 
well potential the wavefunctions are summarized in the Table 5. No exact wave- 
functions are available in this case. 

The accuracy of the wavefunctions and the energies is determined mainly by 
the relation of the order of the Lagrange polynomials (i.e. the parameter N) to the 
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Table 3. Harmonic oscillator potential: comparison of approximate and exact wavefunctions ~ (x) (a. u.) 

x n = 0  n = l  n = 2  n = 3  

(a. u.) approx, exact approx, exact approx, exact approx, exact 

0.0 0.751 0.751 0.000 0.0 -0.529 -0,531 0.000 0.0 
0.5 0.663 0.663 0.468 0.469 -0.235 -0,234 0.470 0.478 
1.0 0.455 0.456 0.645 0.644 0.322 0.322 0.270 0.263 
1.5 0.243 0.244 0.517 0,517 0.605 0.604 -0.316 -0.317 
2.0 0.102 0.102 0.287 0,288 0.502 0.503 -0.593 - 0 . 5 8 7  
2.5 0.033 0.033 0.117 0,117 0.269 0.268 - 0.449 - 0.453 
3.0 0.008 0.008 0.035 0,035 0.100 0.I00 -0.220 -0.217 
3.5 0.002 0.002 0.008 0,008 0.027 0.027 -0,070 - 0 . 0 7 5  
4.0 0.000 0.000 0.001 0.001 0.006 0.006 - 0.018 - 0.017 
4.5 0.000 0,000 0,000 0,000 0.001 0.001 - 0 . 0 0 1  -0.003 
5.0 0.0 0.000 0.0 0,000 0.0 0.000 0.0 - 0.000 

Table 4. Morse potential: comparison of approximate and exact wavefunctions X(x) (a. u,) 

x n = 0  n = l  n = 2  n = 3  

(a. u.) approx, exact approx, exact approx, exact approx, exact 

- 8.5 0.0 0.000 0.0 - 0.000 0.0 0.000 0.0 - 0.000 
- 7.0 0.000 0.000 -0,001 -0.001 -0.000 0,001 0 .001 -0.002 
- 5.5 0.006 0.006 -0.016 -0.015 0.027 0.026 -0.038 -0,037 
- 4.0 0.052 0.052 -0.104 -0.105 0,153 0.154 -0.194 -0.189 
- 2.5 0.202 0.201 -0.308 -0.305 0.335 0.331 -0.300 -0.295 
- 1.0 0,410 0.412 -0.368 -0,371 0.168 0.174 0.029 0.019 

0.5 0.493 0.495 -0.070 -0.069 -0.228 -0.238 0,259 0.276 
2.0 0.391 0.391 0.311' 0.314 -0.267 -0.266 -0.022 -0.035 
3.5 0.220 0.220 0.434 0.432 0.096 0.105 - 0.291 - 0.299 
5.0 0.094 0.094 0,319 0.320 0.387 0.381 -0.098 -0.079 
6.5 0.033 0.032 0,166 0.166 0.380 0.377 0.267 0.266 
8.0 0.009 0.009 0,070 0.068 0.239 0.241 0.397 0.390 
9.5 0.002 0.002 0,022 0.023 0.123 0.118 0.313 0.317 

11.0 0.001 0.000 0,007 0.007 0.047 0.048 0.194 0.188 
12.5 - 0.000 0.000 0.003 0.002 0.014 0.017 0.095 0.092 
14.0 0,000 0,000 -- 0,001 0.000 0.008 0.005 0.036 0.039 
15.5 0.000 0.000 0,001 0.000 - 0.001 0.001 0.019 0.015 
17.0 - 0.000 0.000 -- 0.000 0.000 0.002 0.000 0.003 0.005 
18.5 0.000 0.000 0.000 0.000 -0,001 0.000 0.003 0.002 
20.0 0.000 0.000 - 0.001 0.000 0.002 0.000 - 0.002 0.000 
2t,5 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 

number of nodes of the state considered. As expected it decreases with increasing 
quantum numbers. Of course the accuracy depends also on the fulfilment of the 

boundary conditions. For a given N the definition of the boundaries implies 
the step width b. Generally this means that an optimal choice of the boundaries 
exists for each state separately. Therefore a compromise is necessary which 
depends on the question whether higher states are of interest or not. In the examples, 
values of b being optimal for the fifth state were taken. Only in the case of the box 
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T a b l e  5. D o u b l e  well po t en t i a l :  p o t e n t i a l  v ( x )  (10 -3  a.u.)  a n d  the  a p p r o x i m a t e  w a v e f u n c t i o n s  

Z (x) (a. u.) 
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x P o t e n t i a l  W a v e f u n c t i o n s  

( ~ )  v ( x )  n = 0 n = 1 n = 2 n = 3 n = 4 

0.6 138.00 0.0 0.0 0.0 0.0 0.0 
0.69 87.49 0.001 - 0 .005 --  0.001 0.065 0.006 
0.78 47.35 0 .070 --  0 .195 - 0 .004 0.393 0 .040 
0.87 17.78 0 .434 --  0 .937 - 0.011 1.257 0.076 
0.96 1.58 1.285 - 1.319 - 0 .009 0.359 - 0.028 

1.05 - 1.75 1.651 0 .122 0.015 - 0 . 9 7 1  - 0 . 0 3 7  
1.14 4.92 1.081 1.385 - 0 . 0 0 1  - 0 . 0 0 1  0.069 

1.23 17.18 0 .364 1.079 - 0 .022 1.354 - 0.003 
1.32 31.05 0.069 0.343 - 0 .070 1.064 - 0 .116 
1.41 42.89 0.021 0 .075 0 .000 0.286 - 0 .086 
1.50 50.66 - 0 .003 0.027 0.003 0.103 - 0.081 

1.59 52.86 - 0 . 0 0 3  - 0 . 0 1 0  0.021 0 .054 - 0 . 1 7 4  
1.68 49.15 0.006 0 .004 0.075 - 0.043 - 0.423 
1.77 40.94 - 0 .004 0.006 0.303 0.033 - 1.040 

1.86 30.78 - 0.001 - 0 .010 0 .922 0.030 - 1.415 
1.95 23.10 0.006 0.008 1.583 - 0.037 - 0 .382 
2.04 23.58 - 0 .005 0.000 1.438 0.061 1.133 
2.13 37.07 0 .002 - 0 .002 0.589 0.007 1.025 
2.22 64.90 - 0 .002 0.001 0 .104 0.009 0 .250 

2.31 106.69 0.003 0.002 0.003 - 0 .019 0.020 
2.40 162.29 0.0 0.0 0.0 0.0 0.0 

potential the boundary conditions hold exactly and the results are satisfactory 
for higher quantum numbers, too. 

For the double-well potential, the large deviation of our ground-state energy 
from that of Biczo et al. is caused by the latter calculation, which may be shown 
by a simple estimation. Surprisingly in a few cases the numerical energies are 
somewhat below the exact values. Probably this effect is induced by the propaga- 
tion of small numerical errors of the universal matrices and may be avoided by 
using a higher precision in the corresponding part of the calculation. On the 
contrary, the small oscillations of the wavefunctions leading to additional nodes 
(especially in the case of the double-well potential) are an inevitable consequence 
of the approximation by polynomials. 

The calculations have been carried out by the help of FORTRAN IV programs 
written for the IBM 360/40 computer. The computing time for the universal 
matrices was 40 rain approximately while one actual problem was solved in less 
than 10 sec. The method of Givens and Householder has been used for the matrix 
diagonalizations. 

6. Conclusions 

The proposed method has been proved to be useful for the approximate 
determination of bound states of not too high quantum numbers in an one- 
dimensional potential. Very short computing time is required to obtain the energy 
levels as well as the wavefunctions. 
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The latter aspect qualifies the method for applications in the frame of iterative 
procedures. The problem of the vibrations of protons in a coupled system of 
hydrogen bonds is treated as an example in a following paper. 

Appendix 
We use the polynomials Lk( 0 (k = - N + 1, - N + 2, .. . .  N -  1) given by Eq. (5) 

as a basis for the matrix representation of the reflection group of the one- 
dimensional space. This group consists of the two operations: g (identity) and 
J (reflection through the origin). Their application to the basis functions yields 

e L~(O = r k ( 0  
(A.1) 

i.e. the group is represented by the ( 2 N -  1) th order matrices 

A ( e ) =  1 
(A.2) 

A ( y )  = e 

where the idempotent matrix P has the elements Pm,n = 5_ m,." This representation 
is reducible. Since we have two matrices only, the unitary transformation matrix X 
which reduces the representation is found easily_by diagonalization of the matrix P. 
Due to its idempotency the matrix P has the two degenerate eigenvalues + 1 
and - i, corresponding to the two irreducible representations 

( A l ( e )  = (A2(e)= 11 (A.3) 

respectively, and the matrix of its normalized eigenvectors may be written as 

This means that a matrix G with the elements 
+N 

G,.,. = j d~ Lm(~) fa L . ( O  , (A.5) 
- N  

where ~# is a arbitrary operator commuting with J ,  can be block-diagonalized 
by the transformation 

G = X -~ G X .  (A.6) 

The blocks of the orders N and ( N -  1) correspond to the two irreducible repre- 
sentations of the one-dimensional reflection group and combine even and odd 
functions separately. 
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It can be shown that for each Hermitian operator ~ the relations 

G,.,. = G.,m = G-m,-.  (A.7) 

hold. Thus we see that the relations (29) and (30) as well as the possibility to 
block-diagonalize the matrix S and the matrix H [Eqs. (35) and (39)] are induced 
by the commutability of the operators 1, d2/d~ 2 and v(r  v ( - ~ )  with the 
operator J .  
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